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Abstract

In this report, we introduce Xiaomi-Robotics-0, an advanced vision-language-action (VLA) model
optimized for high performance and fast and smooth real-time execution. The key to our method
lies in a carefully designed training recipe and deployment strategy. Xiaomi-Robotics-0 is first
pre-trained on large-scale cross-embodiment robot trajectories and vision-language data, endowing
it with broad and generalizable action-generation capabilities while avoiding catastrophic forgetting
of the visual-semantic knowledge of the underlying pre-trained VLM. During post-training, we
propose several techniques for training the VLA model for asynchronous execution to address the
inference latency during real-robot rollouts. During deployment, we carefully align the timesteps
of consecutive predicted action chunks to ensure continuous and seamless real-time rollouts.
We evaluate Xiaomi-Robotics-0 extensively in simulation benchmarks and on two challenging
real-robot tasks that require precise and dexterous bimanual manipulation. Results show that
our method achieves state-of-the-art performance across all simulation benchmarks. Moreover,
Xiaomi-Robotics-0 can roll out fast and smoothly on real robots using a consumer-grade GPU,
achieving high success rates and throughput on both real-robot tasks. To facilitate future research,
code and model checkpoints are open-sourced at https://xiaomi-robotics-0.github.io.

1 Introduction

Vision-language-action (VLA) models have emerged as a new paradigm for effective robot policy learning [3,
24, 75]. Building upon pre-trained vision-language models (VLMs), VLA models provide a unified framework
that maps observations and language instructions directly to actions across a wide range of tasks. However,
despite their strong performance and generalization capabilities, VLA models suffer from high inference
latency due to their large parameter counts, which can scale to billions of parameters. This creates challenges
for smoothly chaining actions across consecutive inference steps, leading to out-of-distribution jerky motions
if not handled properly [4].

In this report, we introduce Xiaomi-Robotics-0 (Fig. 1), an advanced vision-language-action (VLA) model
that delivers high performance while enabling fast and smooth rollouts on real robots. It is composed of
a pre-trained vision-language model (VLM) [1] for processing vision and language inputs and a diffusion
transformer [48] for generating actions via flow-matching [34, 39]. The training recipe contains two stages:
pre-training and post-training. During pre-training, we train the model with large-scale cross-embodiment
robot trajectories and vision-language data. This stage endows the model with broad and generalizable
action generation capabilities while maintaining the strong vision-language capabilities in the underlying
pre-trained VLM it built upon. During post-training, we introduce novel techniques to enable fast and smooth
asynchronous execution during real-robot rollouts. Specifically, we first condition the generation of action
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Figure 1 Overview. Xiaomi-Robotics-0 achieves state-of-the-art performance in three widely-used simulation
benchmarks. It also attains high throughput on two challenging real-robot bimanual manipulation tasks. Furthermore,
it matches the underlying pre-trained VLM on several VLM benchmarks.

chunks by prefixing it with actions from the previous inference as in [5]. While this conditioning method
ensures continuity across consecutively generated chunks, it allows the generation of later-timestep actions to
exploit the temporal correlation that successive actions tend to be similar. As a result, policy learning can
take a shortcut by simply imitating the action prefix rather than attending to visual and language signals,
resulting in less reactive policies and degraded performance. To address this issue, we replace the causal
attention mask with a Λ-shape attention mask [16, 20, 70] during post-training, encouraging action generation
to pay more attention to visual and language conditions rather than over-relying on the action prefix. During
deployment, we carefully align the timesteps of action chunks generated from consecutive inferences to ensure
continuous and seamless real-robot rollouts.

We evaluate Xiaomi-Robotics-0 extensively on both simulation benchmarks and a bimanual real-robot
platform. Our model achieves state-of-the-art performance across three widely-used simulation benchmarks.
Specifically, it achieves an average success rate of 98.7% on Libero [35]. On SimplerEnv [30], it delivers strong
performance under the visual matching (85.5%) and visual aggregation (74.7%) settings in the Google Robot
evaluations as well as the WidowX evaluations (79.2%). On CALVIN [44], Xiaomi-Robotics-0 improves the
average length of completing 5 tasks in a row from 4.54 to 4.75 and from 4.67 to 4.80 on the ABC→D and
ABCD→D split, respectively. In real-robot experiments, we evaluate on two challenging tasks that require
precise and dexterous bimanual manipulation: Lego disassembly and towel folding. Xiaomi-Robotics-0 is
able to achieve high success rates on both tasks while outperforming state-of-the-art methods [5, 19] on both
tasks in terms of throughput, enabling rapid and smooth real-time execution. In addition, our pre-trained
model matches the performance of the underlying pre-trained VLM [1] on several general vision-language
benchmarks and a benchmark focused on embodied reasoning [63].

We release the pre-trained and post-trained checkpoints, along with the inference code to facilitate future
research. We hope these resources serve as a practical foundation for advancing vision-language-action (VLA)
models.
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Figure 2 Data. Xiaomi-Robotics-0 leverages both robot trajectory data and vision-language (VL) data during
pre-training.

2 Xiaomi-Robotics-0

Xiaomi-Robotics-0 is an end-to-end vision-language-action (VLA) model that takes as inputs observation
images, a language instruction, and the robot proprioceptive state. It outputs an action chunk [74] to control
a bimanual robot in an end-to-end manner.

2.1 Data

We leverage both robot trajectory data and vision-language (VL) data during training. Fig. 2 illustrates the
detailed data composition. Our robot trajectory data are sourced from multiple open-sourced robot datasets
(e.g., DROID [23] and MolmoAct [26]) as well as in-house data collected by ourselves. Our in-house data
consists of teleoperated trajectories for two challenging tasks: lego disassembly and towel folding. In total,
we collected 338 and 400 hours of data for these two tasks, respectively. Overall, the entire robot trajectory
dataset contains about 200M timesteps for training.

For the vision-language data, we curate a comprehensive corpus of more than 80M samples from two primary
sources: general vision-language (VL) datasets [9, 59, 65, 68] and robot datasets [23, 26]. While general VL data
preserve broad semantic knowledge, VL data derived from robot trajectories enhance the model’s perception
on robot-centric images, which are often captured from egocentric perspectives or wrist-mounted cameras.
Specifically, we curate data by focusing on four vision-language tasks: (1) visual grounding, (2) visual question
answering (VQA), (3) image captioning, and (4) embodied reasoning & planning. For visual grounding, we
develop a rigorous cross-validation consensus mechanism using Grounded SAM [55], Grounding DINO 1.5 [54],
and LLMDet [15] to ensure pixel-level precision of annotations. VQA and captioning annotation quality
is further refined through re-labeling using state-of-the-art pre-trained VLMs [1]. For embodied reasoning
& planning, we leverage pre-trained VLMs to generate data from root trajectories, focusing on embodied
question answering (EQA), high-level task planning, and point trajectory prediction.

2.2 Model & Training

Xiaomi-Robotics-0 adopts a mixture-of-transformers (MoT) [32] model architecture. It consists of a pre-
trained vision-language model (VLM) (i.e., Qwen3-VL-4B-Instruct [1]) and a diffusion transformer (DiT) [48].
The VLM takes as inputs observation images ot of the current timestep, along with a language instruction l

provided by the user. The DiT generates a T -step action chunk at:t+T [74] via flow-matching, conditioned
on the KV cache produced by the VLM and the robot proprioceptive state. In total, the model has 4.7B
parameters.
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Figure 3 Model & Training. (a) During the first step of pre-training, we train the VLM on both vision-language data
(left) and robot trajectory data (right). Vision-language data are trained via a next-token-prediction objective. We
adopt the training paradigm in Choice Policies [51] to train the VLM for action prediction on the robot trajectory
data. (b) In the second step of pre-training, we freeze the VLM and train the diffusion transformer for generating
action via flow-matching. (c) During post-training for asynchrnnous execution, we append clean action prefix in front
of the noisy action tokens.

2.2.1 Pre-training

We perform pre-training in two steps. In the first step, our goal is to endow the VLM with action-generation
capability by training it to predict action chunks from observation images, language instructions, and robot
proprioceptive states. To account for the multi-modality in trajectories, we adopt Choice Policies [51] for
action prediction. Specifically, we train the VLM to simultaneously predict N action chunk candidates along
with their corresponding N scores (right of Fig. 3(a)). During training, we compute the L1 distance between
each predicted action chunk candidate and the ground truth, and utilizing these values as supervision targets
for score prediction. Action prediction is supervised via a winner-takes-all scheme: only the candidate with
the lowest L1 distance is updated via backpropagation.

Architecturally, we encode the robot proprioceptive state st using an MLP. For action prediction, we append
T learnable tokens [Ai] to predict N sets of T -step action chunks at:t+T , and one additional token [S] to
predict the score s for each chunk. The input token sequence is: ot, l, st, [A1], ..., [AT ], [S]. The output of
each action token [Ai] is mapped to N predictions of the action at the i-th timestep, while the output of the
score token [S] is mapped to N scores.

To avoid catastrophic forgetting of the strong vision-language capabilities of the underlying pre-trained
VLM [1], and to improve its visual understanding on robot-centric data, we co-train the model with the entire
robot trajectory data and vision-language data described in Sec. 2.1. The vision-language data is trained with
a next-token-prediction objective (left of Fig. 3(a)). We sample vision-language data and robot trajectory
data at a ratio of 1:6.

After the first step of training, the VLM is equipped with the capability to generate actions. In the second
step, we freeze the VLM and train the diffusion transformer (DiT) from scratch on the entire robot trajectory
data with a flow-matching loss (Fig. 3(b)):

L(θ) = ||vθ(ot, l, st, ã
τ

t:t+T , τ)− u(ãτt:t+T , at:t+T , τ)||
2
2 (1)

τ ∈ [0, 0.999] is the flow-matching timestep. a
τ

t:t+T
= τ ãt:t+T + (1− τ)ϵ is the noisy action where ϵ ∼ N (0, I).
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Figure 4 The Λ-Shape Attention Mask for Post-Training. A noisy action token can only attend to the vision and
language tokens via the VLM KV cache, the sink token, the state token, and the action tokens of the previous w

timesteps. The number in each token indicates the RoPE positional index of the token. Note that we add an offset of
10 for the noisy action tokens to allow the model to distinguish them from the clean action prefix tokens.

Following [3, 19], we sample τ from a Beta distribution, placing more weight on noisier timesteps during
training. We leverage adaptive normalization layers (adaLN) [48, 49] to inject the flow-matching timestep
condition into the DiT for action generation. The robot proprioceptive state and noisy actions are encoded
with MLPs. We add a learnable attention sink token at the front of the state and noisy action tokens
to stabilize the attention distribution during training. The input tokens for the DiT are sequenced as:
[SINK], st, ãt, . . . , ãt+T−1, where ãt+k corresponds to a noisy action. To account for the temporal relationship
between actions at different timesteps, we use causal attention in the DiT. To reduce inference latency, we use
a 16-layer DiT and condition it on the KV cache from the last 16 layers of the VLM. During this step, we
leverage the VLM as a frozen multimodal conditioner for providing visual-language features, while the DiT
learns to generate action chunks conditioned on these features. The inputs to the VLM contains only the
observation images ot and language l without the newly introduced tokens for action prediction as in the first
step.

2.2.2 Post-training

In post-training, we adapt Xiaomi-Robotics-0 to a specific robot by training solely on its native trajectory
data. We describe two post-training methods for synchronous and asynchronous execution, respectively. For
synchronous execution, we simply unfreeze the entire model, i.e., the VLM and DiT, and continue training on
predicting actions via flow-matching as in the second step of pre-training.

However, when deploying on real robots, inference latency becomes non-negligible due to the large number of
parameters, causing pauses in synchronous execution where the robot remains idle until the next inference
is completed. Asynchronous execution enables the robot to continue rolling out trajectories during model
inference. In this setting, it is crucial to maintain consistency across consecutively inferred action chunks
and ensure smooth transitions between them, since inconsistency can induce jerky motions and drive the
robot into out-of-distribution regimes [4]. To address this problem, prior work proposes real-time chunking
(RTC) [4] and training-time RTC [5], which condition action generation on previously committed actions. In
this work, we follow training RTC [5] and condition action generation on ∆tc previously committed actions
by prefixing them to the noisy action tokens in DiT (Fig. 3(c)). The input token sequence of the DiT thus
becomes: [SINK], st, at, . . . , at+∆tc−1, ã

τ

t+∆tc
, . . . , ãτ

t+T−1. While this approach reduces inconsistency, it also
enables predictions of later-timestep actions to exploit the temporal correlation between successive actions.
As a result, policy learning may take a shortcut by simply copying the action prefix instead of attending to
visual and language inputs, leading to less reactive policies and degraded performance.

We propose simple techniques to alleviate this issue. We first simply add an offset to the RoPE positional
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Figure 5 Asynchronous Execution. We show two consecutive chunks and how they are stitched together during
robot rollout. See Sec. 2.3 for more details.

indices of the noisy action tokens to enable the model to distinguish tokens of noisy actions from those of
the clean action prefix. In addition, we change the original causal attention mask of the DiT to a Λ-shape
attention mask [16, 20, 70] (Fig. 4). Since the noisy action tokens immediately following the tokens of the
action prefix can attend to them, the generated actions can smoothly transition from the action chunk
produced by the previous inference. In contrast, noisy action tokens of later timesteps cannot attend to the
tokens corresponding to the conditioned action prefix, forcing them to attend to other signals (e.g., visual
observations and languages), thus ensuring reactivity in the predicted actions.

During training, we sample ∆tc from the set {0, 1, · · · , 6}. When ∆tc > 0, we dynamically re-weight the
flow-matching loss based on the L1 error between online-predicted actions and the ground-truth actions. This
strategy prioritizes samples with larger deviations, directing the model to focus on correcting significant
execution errors.

2.3 Deployment

We describe deployment methods for synchronous and asynchronous execution, respectively.

Synchronous Execution. For synchronous execution, we control the robot to execute the first Te steps of
actions within the T -step predicted action chunk. Once these actions have been rolled out, we immediately
start inferring the next action chunk using the latest observation images and proprioceptive state. The robot
remains idle until the inference completes.

Asynchronous Execution. We visualize the asynchronous execution in Fig. 5. For each inferred action chunk,
we first similarly roll out Te steps before triggering the subsequent inference cycle. However, instead of staying
idle, the robot continues executing the remaining actions of the current chunk while the next chunk is being
inferred. We condition the next inference by prefixing the noisy actions with the actions from step Te to step
Te +∆tc − 1 of the current chunk. Upon completion, the newly generated chunk is executed starting from
step ∆tinf , where ∆tinf is the inference latency. We set ∆tc ≥ ∆tinf so that the action prefix covers the entire
inference window. As a result, there are always actions available for execution throughout the entire inference,
enabling seamless transition between consecutive control cycles.

During inference, we initialize the action chunk by sampling from a standard Gaussian distribution, aτ=0
t:t+T

∼
N (0, I). We then perform 5 flow-matching steps and integrate τ from 0 to 1 to obtain the predicted action
chunk. Deployed on an NVIDIA GeForce RTX 4090 GPU, the model achieves an inference latency of
tinf = 80ms. To ensure consistency with the training distribution, we synchronize all input modalities by
resampling them to a unified 30 Hz timeline using timestamps. At each clock tick, the temporally nearest
measurements from all sensors are aggregated to form a synchronized model input.

3 Experiments
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Method Libero-Spatial Libero-Object Libero-Goal Libero-Long Average

OpenVLA [24] 84.7% 88.4% 79.2% 53.7% 76.5%
OpenVLA-OFT [25] 97.6% 98.4% 97.9% 94.5% 97.1%
π0 [3] 96.8% 98.8% 95.8% 85.2% 94.2%
π0-FAST [50] 96.4% 96.8% 88.6% 60.2% 85.5%
π0.5 [19] 98.8% 98.2% 98.0% 92.4% 96.9%
GR00T-N1 [45] 94.4% 97.6% 93.0% 90.6% 93.9%
UniVLA [8] 95.4% 98.8% 93.6% 94.0% 95.4%
Discrete Diffusion VLA [33] 97.2% 98.6% 97.4% 92.0% 96.3%
MemoryVLA [60] 98.4% 98.4% 96.4% 93.4% 96.7%
FLOWER [58] 97.2% 99.3% 96.9% 92.4% 93.4%
EO-1 [52] 99.7% 99.8% 99.2% 94.8% 98.2%
Xiaomi-Robotics-0 (Ours) 98.8% 100.0% 98.8% 97.2% 98.7%

Table 1 Results on the LIBERO benchmark.

3.1 Simulation Benchmarks

We evaluate our method on three widely-used simulation benchmarks.

• LIBERO [35]: LIBERO features a robot arm performing various manipulation in the simulation. We use the
filtered expert demonstrations from [24], which remove unsuccessful trajectories, for training. Following [50],
we train the model on data from all four splits, i.e., Libero-Spatial, Libero-Object, Libero-Goal, and
Libero-Long. We follow the standard evaluation protocol in OpenVLA [24] and report success rates on
each split and the average success rate across all splits. We set the action chunk length T = 10.

• CALVIN [44]: CALVIN contains four different environments (i.e., A, B, C, and D) in total. It is designed
for multi-task learning and long-horizon manipulation. We follow the standard evaluation protocol [44]
and evaluate on the ABCD→D and ABC→D splits. For ABCD→D, the model is trained on data collected
from environments A, B, C, and D; for ABC→D, it is trained on data collected from environments A, B,
and C only. In both settings, evaluation is conducted in environment D. Therefore, ABCD→D measures
in-distribution performance, whereas ABC→D quantifies out-of-distribution generalization capabilities.
During evaluation, the model is prompted with 1000 unique instruction chains, each containing five
instructions. For each chain, the model outputs actions to control the robot to solve tasks specified by the
instructions sequentially. We report success rates of completing 1, 2, 3, 4, and 5 tasks in a row and the
average length of tasks completed per chain. We set the action chunk length T = 10.

• SimplerEnv [30]: SimplerEnv is a real-to-sim benchmark featuring two robot platforms: Google Robot and
WidowX. It enables a pipeline where policies are trained on real-world robot trajectories and subsequently
evaluated in simulated environments. The Google Robot environment provides two evaluation settings:
Visual Matching and Variant Aggregation. Visual Matching aligns the visual appearance between real-robot
scenes and their simulated counterparts, whereas Variant Aggregation introduces visual randomization to
test robustness. Following the standard evaluation protocol of SimplerEnv [30], we train our policy on
the RT-1 Fractal dataset [6] and evaluate it on four tasks in the Google Robot environment under both
settings. For the WidowX environment, we train our policy on the Bridge dataset [66]. For each policy,
we report success rates for all tasks and variants, as well as the average success rate across tasks. We set
the action chunk length T = 4.

Across all three simulation benchmarks, Xiaomi-Robotics-0 achieves state-of-the-art (SoTA) performance.
On LIBERO (Tab. 1), using the standard evaluation protocol, we obtain an average success rate of 98.7%,
outperforming all the comparing baseline methods. On CALVIN (Tab. 2), our method showcases clear advantages
in both multi-task long-horizon manipulation (ABCD→D) and zero-shot environment generalization (ABC→D).
Measured by the average number of tasks completed in a row of 5, it achieves 4.80 and 4.75 in the two
settings, respectively, substantially outperforming prior baseline methods. On SimplerEnv (Tab. 5 & 4),
Xiaomi-Robotics-0 achieves average success rates of 85.5% and 74.7% on Google Robot evaluations under
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Tasks Completed in a Row

Method Setting 1 2 3 4 5 Avg. Len. ↑

RoboFlamingo [28] ABCD→D 96.4% 89.6% 82.4% 74.0% 66.0% 4.08
GR-1 [69] ABCD→D 94.9% 89.6% 84.4% 78.9% 73.1% 4.21
MoDE [56] ABCD→D 97.1% 92.5% 87.9% 83.5% 77.9% 4.39
RoboVLMs [29] ABCD→D 96.7% 93.0% 89.9% 86.5% 82.6% 4.49
MDT [57] ABCD→D 98.6% 95.8% 91.6% 86.2% 80.1% 4.52
UniVLA [8] ABCD→D 98.5% 96.1% 93.1% 89.9% 85.1% 4.63
FLOWER [58] ABCD→D 99.2% 96.9% 96.9% 92.3% 88.3% 4.67
Xiaomi-Robotics-0 (Ours) ABCD→D 99.7% 98.0% 96.7% 94.2% 91.8% 4.80

RoboFlamingo [28] ABC→D 82.4% 61.9% 46.6% 33.1% 23.5% 2.47
SuSIE [2] ABC→D 87.0% 69.0% 49.0% 38.0% 26.0% 2.69
GR-1 [69] ABC→D 85.4% 71.2% 59.6% 49.7% 40.1% 3.06
3DDA [21] ABC→D 93.8% 80.3% 66.2% 53.3% 41.2% 3.35
MoDE [56] ABC→D 96.2% 88.9% 81.1% 71.8% 63.5% 4.01
GR-MG [27] ABC→D 96.8% 89.3% 81.5% 72.7% 64.4% 4.04
RoboVLMs [29] ABC→D 98.0% 93.6% 85.4% 77.8% 70.4% 4.25
Seer-Large [64] ABC→D 96.3% 91.6% 86.1% 80.3% 74.0% 4.28
VPP [17] ABC→D 95.7% 91.2% 86.3% 81.0% 75.0% 4.29
UniVLA [8] ABC→D 98.9% 94.8% 89.0% 82.8% 75.1% 4.41
FLOWER [58] ABC→D 99.3% 95.9% 90.5% 84.8% 77.5% 4.54
Xiaomi-Robotics-0 (Ours) ABC→D 100.0% 98.3% 96.0% 92.6% 88.1% 4.75

Table 2 Results on the CALVIN benchmark.

Visual Matching and Variant Aggregation, respectively, as well as 79.2% on WidowX evaluations, surpassing
all compared baselines. This consistently strong performance demonstrates robust visual generalization,
especially given the substantial visual gap between the real-world training data and the simulated evaluation
environments.

3.2 Real-Robot Experiments

3.2.1 Evaluation Details

To validate real-world performance, we perform experiments with a bimanual robot equipped with two 6-DoF
robotic arms (Fig. 6). In total, we use three cameras for observation: two wrist-mounted cameras for close-up
views and one external camera for a global view. We evaluate our method on two representative tasks:

• Lego Disassembly (Fig. 6(a)): The robot is tasked with 1) disassembling Lego structures into individual
bricks, and 2) sorting each brick into the corresponding storage bins according to its color. This task
requires precise and coordinated bimanual grasping under contact, followed by accurate placement of
individual bricks.

• Towel Folding (Fig. 6(b)): In towel folding, the robot needs to 1) pick out a towel from a tray, 2)
flatten the towel, 3) fold the towel in half twice, and 4) place the towel to a staging area. This task
is challenging because towels are deformable and exhibit complex, partially observable dynamics (e.g.,
wrinkles and occlusions), requiring accurate and coordinated bimanual grasping, and continuous shape
control throughout the long-horizon folding sequence.

For Lego Disassembly, we evaluate under two settings: large-assembly (LA) and multi-assembly (MA), as
illustrated in Fig. 6(a). The LA setting evaluates the model’s ability to handle increasing complexity within
a single structure. It includes three sizes, i.e., LA-5, LA-10, and LA-20, which comprises 5, 10, and 20
bricks, respectively. For each size, we evaluate three different assembly configurations and run three trials per
configuration. The MA setting consists of 34 bricks in total, including both single bricks and groups of two
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Figure 6 Real-Robot Experiments. (a) We show the setting for Lego Disassembly evaluation. (b) We show the setting
for Towel Folding evaluation and all the towels used during evaluation. (c) Quantitative results of different methods on
the two tasks.

or three bricks assembled together. We evaluate three trials for this setting. We report the average success
rate, defined as the ratio of correctly sorted bricks to the total number of bricks, as well as the throughput,
computed as the number of correctly sorted bricks divided by the total rollout time. For Towel Folding, we
evaluate the policy using six different towels, as shown in Fig. 6(b). We perform two continuous 30-minute
rollouts for each method. During evaluation, if a single folding attempt exceeds a 2-minute threshold, it
is considered a failure. We evaluate the performance by reporting the throughput, calculated as the total
number of successfully folded towels divided by the rollout duration.

3.2.2 Implementation Details

We compare our method with a state-of-the-art baseline and several ablation variants:

• π0.5 [19]: A state-of-the-art VLA baseline. We follow the official OpenPi1 fine-tuning protocol and adapt
the released base model to our specific tasks. We use identical training settings as in our experiments.

• Xiaomi-Robotics-0: Our main method, which incorporates asynchronous execution during post-training
to achieve smooth and responsive real-time execution.

• Xiaomi-Robotics-0 (Sync): A synchronous variant of our model for quantifying the performance gains
from asynchronous execution.

• Xiaomi-Robotics-0 (Training RTC): The baseline asynchronous variant that leverages training RTC [5]
during post-training.

We follow the pre-training and post-training procedures described in Sec. 2. We pre-train the model for 40k
steps with a batch size of 32,768. We post-train the model with a batch size of 2,048 for 40k steps on Lego
Disassembly and 80k steps on Towel Folding. We use AdamW [41] as the optimizer and DeepSpeed ZeRO-2
for training. We set the action chunk length T , corresponding to 1 second of actions.

1https://github.com/Physical-Intelligence/openpi
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3.2.3 Results

Experiment results are summarized in Fig. 6(c). In Lego Disassembly, all methods are comparable in terms of
average success rates, with the two synchronous methods—π0.5 and Xiaomi-Robotics-0 (Sync)—performing
slightly better than the other two asynchronous counterparts. This is because asynchronous methods are
less reactive in motion, leading to less precise grasps and high tension between bricks and the gripper fingers,
which can cause bricks to eject away from the workspace. In terms of throughput, Xiaomi-Robotics-0
(Sync) surpasses π0.5, indicating that our method is more efficient in this task. Xiaomi-Robotics-0 achieves
the highest throughput among all methods, surpassing the training RTC variant which is also deployed
asynchronously. This shows that our proposed post-training techniques are effective in improving execution
efficiency in this task that requires high precision.

For Towel Folding, π0.5, Xiaomi-Robotics-0 (Sync), and Xiaomi-Robotics-0 (Training RTC) achieve
comparable throughputs of 1 pcs/min. Xiaomi-Robotics-0 outperforms these three methods, achieving a
throughput of 1.2 pcs/min. These results demonstrate that our method enables fast and robust performance
in the challenging deformable object manipulation. The Training RTC variant often gets stuck when it
inadvertantly grasps multiple layers of the towel during the flinging motion, preventing the motion from
flattening the towel. Rather than re-grasping to correct this, the policy falls into a repetitive loop, repeatedly
executing the flinging motion. This observation suggests that the action-prefixing mechanism introduces a
shortcut in policy learning, allowing later-timestep action predictions to simply copy the prefixed actions
rather than attend to signals from other modalities. In contrast, Xiaomi-Robotics-0 are able to effectively
avoid such repetitive failures.

3.3 Preservation of Vision-Language Capabilities

During pre-training, we jointly train Xiaomi-Robotics-0 on both vision-language data and robot trajectory
data (Sec. 2.2). This enables the model to avoid catastrophic forgetting of the vision-language capabilities of
the underlying pre-trained VLM and enhance visual perception on robot-centric data. To validate this, we
evaluate the VLM of Xiaomi-Robotics-0 after pre-training on a comprehensive suite of vision-language (VL)
benchmarks [14, 22, 31, 40, 42, 47, 61, 63, 72, 73], covering tasks from general QA to hallucination detection.
We further report results on ERQA [63], a benchmark designed for evaluating embodied reasoning capabilities.
We compare with two state-of-the-art vision-language-action (VLA) models, π0.5 [19] and MolmoAct [26],
which also incorporate vision-language data during training. We also include comparison with VLA models
that do not incorporate VL data during training to understand how the VL capabilities degrade in the absence
of the corresponding data. Specifically, we compare with π0 [3] and a variant of our method which removes
VL data during pre-training (denoted as Xiaomi-Robotics-0 (w/o VL data)).

Model ERQA SEED POPE AI2D MMBench MME MMMU TextVQA SciQA ChartQA

π0 [3] 0.0 0.0 0.0 0.0 0.0 0.1 0.1 1.4 0.0 0.0
π0.5 [19] 0.0 21.5 0.0 14.4 22.1 0.0 19.9 0.0 28.0 0.5
MolmoAct [26] 33.5 72.7 86.6 72.0 80.1 69.5 38.0 67.3 91.1 57.1
Xiaomi-Robotics-0 (w/o VL data) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Xiaomi-Robotics-0 (Ours) 40.8 78.6 88.5 78.7 84.4 81.8 46.2 72.0 79.4 59.2

Qwen3-VL-4B-Instruct [1] 40.0 78.8 89.7 81.6 88.7 87.1 51.7 78.0 92.7 76.8

Table 3 Quantitative results on general vision-language and embodied reasoning benchmarks. See Appendix C for
detailed definitions and evaluation metrics for each benchmark.

Results are shown in Tab. 3. Xiaomi-Robotics-0 outperforms all the comparing VLA baselines in all
but one benchmarks. It is able to effectively preserve the vision-language capabilities of the underlying
pre-trained VLM, trailing slightly behind it on most general VL benchmarks. It showcases strong performance
in the challenging object hallucination evaluations (the POPE series) and OCR-related tasks (e.g., AI2D).
Surprisingly, Xiaomi-Robotics-0 slightly surpasses Qwen3-VL-4B-Instruct on the ERQA benchmark (40.8
v.s. 40.0). We hypothesize that this gain stems from incorporating vision-language data derived from robot
trajectory data into the training mixture, which strengthens visual perception on robot-centric inputs. π0

achieves near-zero performance on most VL tasks, while Xiaomi-Robotics-0 (w/o VL data) attains zero
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performance across all tasks. These results indicate that without explicit vision-language supervision, training
on robot trajectories alone fails to retain the general-purpose VL knowledge, leading to severe catastrophic
forgetting. We provide additional qualitative results of Xiaomi-Robotics-0 on different evaluation benchmarks
in App. A.

4 Related Work

Recently, vision-language-action (VLA) models have emerged as a new paradigm for robot policy learning [3, 6,
8, 10, 19, 24, 25, 29, 45, 50, 75]. By leveraging large scale of robot data collected across diverse embodiments,
tasks, and environments [7, 12, 23, 66], VLA models can effectively solve a broad range of tasks and showcase
strong generalization capabilities on handling various kinds of out-of-distribution settings, including novel
environments, instructions and objects [10, 19, 75]. Typically, VLAs are built upon pre-trained vision-language
models (VLMs) that have been trained to capture broad visual semantic knowledge. A straightforward
approach is to convert actions to discretized tokens and train the VLM to generate actions via a next-
token-prediction objective [24, 50, 75]. However, action tokenization can introduce quantization error and
reduce control precision. Another effective method of modeling the complex trajectory distribution is to
leverage the expressive power of flow matching [3, 10, 19, 45, 52] or diffusion [11, 36–38, 67]. To effectively
transfer knowledge from the pre-trained VLMs to VLA models, it is crucial to preserve the VLMs’ capabilities
throughout VLA training. One simple method is to jointly train on both vision-language (VL) data and
robot trajectories [19, 26, 75]. Recent work [13] further proposes detaching the flow-matching objective from
the VLM backbone, thereby preventing gradient backpropagation into it. We build Xiaomi-Robotics-0 by
integrating a pre-trained VLM [1] with a diffusion transformer [48] that generates actions via flow matching.
During pre-training, we jointly train on both robot trajectories and VL data in the first stage and freeze
the VLM while training the DiT in the second stage to avoid catastrophic forgetting of the vision-language
knowledge.

Given the large number of parameters—often up to billions—the inference latency of large VLA models is
non-negligible during real-robot rollouts [4]. A simple execution strategy is to roll out policies synchronously [3],
where the robot remains idle until the next inference completes, causing pauses and discontinuous actions.
Another method is to accelerate inference to achieve real-time performance [43]. Recent work explores
asynchronous execution, where the robot continues executing while the model performs inference [3, 19, 62].
A line of work proposes to prefix previously generated and committed actions in the prediction of the next
action chunk. Real-Time Chunking (RTC) [4] leverages a training-free inpainting algorithm that “freezes”
the prefixed action and “inpaints” the rest in a way that is consistent with the frozen prefix. Training
RTC [5] incorporates the prefixed actions during training. However, conditioning on prefixed actions during
training allows later-timestep predictions to leverage the shortcut of exploiting temporal correlations between
consecutive actions, resulting in less reactive behavior. In this work, we propose several practical techniques
to address this issue, achieving high throughput on challenging tasks that require precise and dexterous
manipulation.

5 Conclusions

We introduce Xiaomi-Robotics-0, a powerful vision-language-action (VLA) model designed for both high
performance and fast and smooth real-time execution. Xiaomi-Robotics-0 is pre-trained on large-scale robot
trajectories and vision-language data, enabling broad and generalizable action generation while preventing
catastrophic forgetting of the visual-semantic knowledge in the underlying pre-trained VLM. In post-training,
we develop several practical techniques to train the VLA model for asynchronous execution, allowing continuous
and reactive real-time execution on real robots. We validate Xiaomi-Robotics-0 on extensive simulation
benchmarks and two real-robot tasks requiring precise, dexterous bimanual manipulation. Results showcase
that the proposed method delivers state-of-the-art performance on all simulation benchmarks. In addition,
Xiaomi-Robotics-0 runs fast and smoothly on real robots with a consumer-grade GPU, achieving high
success rates and strong throughput in both real-world tasks. In the future, we plan to explore training the
model on larger and more diverse robot datasets and continue to improve its robustness and generalization
capabilities in real-world tasks.
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Appendix

A Case Study for Preservation of Vision-Language Capabilities

Xiaomi-Robotics-0:
A weathered wooden jetty extends
across the turquoise waters of a
sheltered cove, its aged planks and
rusted metal supports anchored in the
clear, shallow water that reveals patches
of submerged vegetation and rocky
seabed. The foreground features a
rugged shoreline of white limestone
rocks interspersed with sparse, drought-
resistant shrubs, while the jetty leads the
eye toward a distant sandy beach
bordered by low-lying, scrub-covered
hills under a cloudless azure sky. The
calm water transitions from emerald
near the shore to deeper sapphire hues
farther out, reflecting the bright sunlight
that illuminates the arid, undulating
landscape beyond the cove.

User:
Provide a detailed description of
everything in the image.

Input Image:

Xiaomi-Robotics-0:
The bird in the image has a combination
of colors: its upper parts (back, wings,
and head) are brownish-gray, while its
underparts (chest and belly) are white.
Additionally, it has a dark (black) beak
and greenish legs.

User:
What color is the bird in the image?

Input Image:

Xiaomi-Robotics-0:
The man is holding a food item that appears to be a
corn dog or a similar fried snack, which is consistent
with the food offerings advertised by the "Charlie's
Italian Sausage" stand (e.g., "CORN DOGS" is listed on
the stand’s signage).

User:
Provide a detailed description of everything in the
image.

Input Image:

Xiaomi-Robotics-0:
A weathered wooden jetty extends across
the turquoise waters of a sheltered cove, its
aged planks and rusted metal supports
anchored in the clear, shallow water that
reveals patches of submerged vegetation
and rocky seabed. The foreground features
a rugged shoreline of white limestone rocks
interspersed with sparse, drought-resistant
shrubs, while the jetty leads the eye toward
a distant sandy beach bordered by low-
lying, scrub-covered hills under a cloudless
azure sky. The calm water transitions from
emerald near the shore to deeper sapphire
hues farther out, reflecting the bright
sunlight that illuminates the arid, undulating
landscape beyond the cove.

User:
What could be a potential reason for the
sunglasses placed on the table?

Input Image:

Xiaomi-Robotics-0:
Two polynomial multiplication problems are shown,
each with step-by-step solutions. The first multiplies
! + 3 by (!! − 3! + 2) , distributing to obtain !" −
3!! + 2! , then adding 3!! − 9! + 6 to yield the
simplified result !" − 7! + 6 . The second multiplies
2+ + 3, by 2+! − 3+, − 9,!, distributing to form 4+" −

27+,! − 27,", with no intermediate steps shown. Both
problems are presented in a structured format with
the title "Multiply:" above the equations.

User:
Could you please depict the text and formula in the
picture?

Input Image:

Xiaomi-Robotics-0:
The largest segment in Diagram B is 80,
and the smallest segment is 16. The ratio of

the largest to the smallest is:
#$

%&
= 5. Thus,

the ratio is 5:1.

Answer: A

User:
In Diagram B, what is the ratio of the largest
segment to the smallest segment? A) 5:1 B)
2:1 C) 4:1 D) 1:1

Input Image:

Dense Caption Fine-grained Classification Dense Captioning

Attribute Recognition

OCR

Chart Understanding

Figure 7 Qualitative results of Xiaomi-Robotics-0 on vision-language tasks (I).
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Xiaomi-Robotics-0:
The vessels are found in the following regions:
- (65, 302, 905, 582),
- (425, 658, 555, 708),
- (712, 692, 820, 742).

User:
What are the bounding boxes for vessels?

Input Image:

Xiaomi-Robotics-0:
The shirt is … at (146, 356, 640, 997).

Baseline (Qwen3-VL-4B):
(144, 370, 640, 999)
Ground Truth:
(146.0, 356.0, 640.0, 997.0)

User:
In the current observation, what is the position 
of shirt?

Input Image:

Xiaomi-Robotics-0:
On the cutting board, which is … at (485, 308,
667, 397).

Baseline (Qwen3-VL-4B):
There are no knives in this frame. The image
shows a kitchen scene with a cutting board on
the counter, but no visible knives are present.

Ground Truth:
(487.0, 306.0, 665.0, 395.0)

User:
In this frame, on which thing can I find the 
knives? Point out its position in form of 
bounding box. 

Input Image:

Xiaomi-Robotics-0:
left: (350, 419), (350, 419), (350, 419), (350,
419), (350, 419); right: (634, 560), (400, 510),
(400, 510), (400, 510), (541, 480).

User:
For the task 'Place the picked-up small bottle 
mineral water into the colorful canvas bag on 
the desktop with the right arm.', output 
synchronized left and right arm paths in 
normalized image coordinates (0–1000). 
Format: left: ...; right: ...

Input Image:

Xiaomi-Robotics-0:
The red bell pepper is … at (171, 450, 321,
638).

Ground Truth:
(180, 457, 344, 598)

User:
Where is the red bell pepper in the image? 
Please provide the bounding box in format 
(x1, y1, x2, y2). 

Input Image:

Xiaomi-Robotics-0:
['Grip the wardrobe door handle with the
right arm.', 'Open the wardrobe with the
right arm.', 'Advance towards the open
wardrobe with the clothes hanger held in
the left arm.', 'Hang the held clothes in the
wardrobe with the left arm.', 'Step back a bit
away from the wardrobe.', 'Turn to the open
wardrobe door.', 'Close the wardrobe door
with the right arm.']

User:
Provide a detailed plan to accomplish: 
Open the wardrobe and hang the clothes.

Input Image:

Grounding

Embodied Grounding with Reasoning

Trajectory Prediction

Embodied Grounding Embodied Grounding

Embodied Planning

FT: 1.000 BL: 0.971

FT: 0.935 BL: N/A

IoU: 0.63

Figure 8 Qualitative results of Xiaomi-Robotics-0 on vision-language tasks (II). “...” indicates omitted content for
space constraints.
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✓ Xiaomi-Robotics-0: 32
✗ Qwen3-VL-4B: 34
✗ MolmoAct: The sum of the bars in th...
✗ π!.#: <empty>
✗ π!: santiago parang ElementRe...

User: Find the sum of the bars in the 
category ''I have used it once''?
GT: 32

Input Image:

✗ Xiaomi-Robotics-0: 20, 000
✗ Qwen3-VL-4B: 20500
✗ MolmoAct: Blurb published 20500 bo...
✗ π!.#	: <empty>
✗ π!	: /** iSneakyThrowstopRight...

User: How many books did Blurb publish 
in 2017?
GT: 20656

Input Image:

✓ Xiaomi-Robotics-0: B
✗ Qwen3-VL-4B: A
✗ MolmoAct: C
✗ π!.#: A
✗ π!: THEOREMRefer ncieszulegen...

User: Parakeet auklets are small seabirds ... Which 
animal's feet are also adapted for swimming? A. water 
rail B. European beaver … 
GT: B

Input Image:

✓ Xiaomi-Robotics-0: STOP
✓ Qwen3-VL-4B: STOP
✗ MolmoAct: The sign in the image is ...
✗ π!.#: <empty>
✗ π!: opsidaopsidatransQ VizieR...

User: what does the sign say?
GT: stop

Input Image:

✗ Xiaomi-Robotics-0: D
✗ Qwen3-VL-4B: D 
✗ MolmoAct: B 
✗ π!.#	: <empty> 
✗ π!	: Pourtant Mlleype Pendeoph...

User: Which of these cities is marked on the map? A. 
New York City B. Washington, D.C. C. Philadelphia D. 
Boston …
GT: C

Input Image:

✗ Xiaomi-Robotics-0: Three
✗ Qwen3-VL-4B: 4 
✗ MolmoAct: The image shows 4 missile... 
✗ π!.#: <empty> 
✗ π!: ast ro desopsidaopsidaGra...

User: how many missiles does the plane have?
GT: 3

Input Image:

ScienceQA OCR

ChartQA GQA
Counting

ChartQA

✓ Xiaomi-Robotics-0: C
✗ Qwen3-VL-4B: B
✗ MolmoAct: B
✗ π!.#: <empty>
✗ π!: charContentAsyncopsida Co...

User: What direction is China in the Kyr-
gyzstan? A. west B. north C. east D. south
GT: C

Input Image:

GQA

✓ Xiaomi-Robotics-0: No
✓ Qwen3-VL-4B: no
✓ MolmoAct: No.
✗ π!.#: <empty> 
✗ π!: /**AsUpSneakyThrowsPozriC...

User: Is there a traffic light in the image?
GT: no

Input Image:

Hallucination

User: The nail is about (_) inches long.
GT: 2
✓ Xiaomi-Robotics-0: 2
✗ Qwen3-VL-4B: 3
✗ MolmoAct: 3
✗ π!.#	: <empty> 
✗ π!	: CASCADERegressoropsidaReg...

Input Image:

MathQA

Figure 9 Qualitative comparison of Xiaomi-Robotics-0 against baseline methods. In particular, the bottom row
illustrates challenging failure cases, highlighting limitations in complex numerical reasoning on dense charts and minor
format-following errors (e.g., outputting words instead of digits in counting tasks).
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B Detailed results on SimplerEnv

WidowX
Put Spoon on

Towel
Put Carrot on

Plate
Stack Blocks

Put Eggplant in
Basket

Overall

RT-1-X [12] 0% 4.2% 0% 0% 1.1%
OpenVLA [24] 0% 0% 0% 4.1% 1.0%
Octo-Base [46] 12.5% 8.3% 0% 43.1% 16.0%
Octo-Small [46] 47.2% 9.7% 4.2% 56.9% 29.5%
Magma [71] 37.5% 29.2% 20.8% 91.7% 44.8%
RoboVLMs [29] 45.8% 20.8% 4.2% 79.2% 37.5%
π0 [3] 83.8% 52.5% 52.5% 87.9% 69.2%
π0-FAST [50] 29.1% 21.9% 10.8% 66.6% 32.1%
SpatialVLA [53] 16.7% 25.0% 29.2% 100% 42.7%
ThinkAct [18] 58.3% 37.5% 8.7% 70.8% 43.8%
EO-1 [52] 63.6% 54.5% 81.8% 90.9% 72.7%
Xiaomi-Robotics-0 (Ours) 95.8% 62.5% 75.0% 83.3% 79.2%

Table 4 Results on the WidowX evaluations of SimplerEnv.

Visual Matching Pick Coke Can Move Near
Open/Close
Drawer

Drawer Apple Overall

Octo-Base [46] 17.0% 4.2% 22.7% 0% 11.0%
OpenVLA [24] 16.3% 46.2% 35.6% 0% 24.5%
RT-1 [6] 85.7% 44.2% 73.0% 6.5% 52.4%
RT-1-X [12] 56.7% 31.7% 59.7% 40.7% 47.2%
RT-2-X [12] 78.7% 77.9% 25.0% 7.4% 47.3%
Magma [71] 75.0% 53.0% 58.9% 8.3% 48.8%
RoboVLMs [29] 77.3% 61.7% 43.5% 24.1% 51.7%
SpatialVLA [53] 86.0% 77.9% 57.4% 0% 55.3%
π0 [3] 97.9% 78.7% 62.3% 46.6% 71.4%
π0-FAST [50] 75.3% 67.5% 42.9% 0% 46.4%
ThinkAct [18] 92.0% 72.4% 50.0% - -
MolmoAct [26] 77.7% 77.1% 60.0% - -
EO-1 [52] 98.0% 83.8% 71.3% 52.8% 76.5%
Xiaomi-Robotics-0 (Ours) 98.7% 88.8% 79.6% 75.0% 85.5%

Visual Aggregation Pick Coke Can Move Near
Open/Close
Drawer

Drawer Apple Overall

Octo-Base [46] 0.6% 3.1% 1.1% 0% 1.2%
OpenVLA [24] 54.5% 47.7% 17.7% 0.0% 30.0%
RT-1 [6] 89.8% 50.0% 32.3% 2.6% 43.7%
RT-1-X [12] 49.0% 32.3% 29.4% 10.1% 30.2%
RT-2-X [12] 82.3% 79.2% 35.3% 20.6% 54.4%
Magma [71] 68.6% 78.5% 59.0% 24.0% 57.5%
RoboVLMs [29] 75.6% 60.0% 10.6% 0% 36.6%
π0 [3] 90.1% 80.7% 27.6% 20.5% 54.7%
π0-FAST [50] 77.6% 68.2% 31.3% 0% 44.3%
SpatialVLA [53] 88.0% 72.7% 41.8% 6.3% 52.2%
ThinkAct [18] 84.0% 63.8% 47.6% - -
MolmoAct [26] 76.1% 61.3% 78.8% - -
EO-1 [52] 91.6% 81.7% 55.0% 23.8% 63.0%
Xiaomi-Robotics-0 (Ours) 88.2% 76.8% 67.2% 66.7% 74.7%

Table 5 Results on the Google Robot evaluations of SimplerEnv.
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C VLM Benchmark Details

Benchmark Samples Evaluation Focus

Comprehensive Multi-modal Capabilities

MMBench [40] 4,329 Comprehensive VLM ability with circular evaluation
SEED-Bench [72] 14,233 Fine-grained image-text understanding & spatial relations
MME [14] 2,374 Holistic perception and cognition evaluation

Object Hallucination Evaluation

POPE [31] 9,000 Object existence polling (Random/Popular/Adversarial)

Reasoning and Expert Knowledge

ERQA [63] 400 Embodied AI reasoning in physical scenarios
ScienceQA [42] 2,017 Scientific question answering with chain-of-thought
MMMU [73] 900 Multi-discipline expert-level reasoning

Fine-grained Visual Perception

AI2D [22] 3,088 Scientific diagram structure understanding
ChartQA [47] 2,500 Data visualization interpretation
TextVQA [61] 1,731 OCR-based reasoning in natural scenes

Total ≈ 40,500 Diverse Generalization Assessment

Table 6 Summary of Vision-Language Benchmarks. We select a diverse set of 10 benchmarks covering
comprehensive capabilities, hallucination, reasoning, and fine-grained perception to evaluate the vision-language
capabilities of our model.
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